References

[1]Michal Šorel and Filip Šroubek. Fast convolutional sparse coding using matrix inversion lemma. Digital Signal Processing, 55:44–51, 2016. doi:10.1016/j.dsp.2016.04.012.
[2]Manya V. Afonso, José M. Bioucas-Dias, and Mário A. T. Figueiredo. An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems. IEEE Transactions on Image Processing, 20(3):681–695, March 2011. doi:10.1109/tip.2010.2076294.
[3]Stefano Alliney. Digital filters as absolute norm regularizers. IEEE Transactions on Signal Processing, 40(6):1548–1562, June 1992. doi:10.1109/78.139258.
[4]Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009. doi:10.1137/080716542.
[5]Peter Blomgren and Tony F. Chan. Color TV: total variation methods for restoration of vector-valued images. IEEE Transactions on Image Processing, 7(3):304–309, March 1998. doi:10.1109/83.661180.
[6]Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1):1–122, 2010. doi:10.1561/2200000016.
[7]Jian-Feng Cai, Emmanuel J. Candès, and Zuowei Shen. A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization, 20(4):1956–1982, 2010. doi:10.1137/080738970.
[8]Emmanuel J. Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal component analysis? Journal of the ACM, 58:11:1–11:37, June 2011. doi:10.1145/1970392.1970395.
[9]Rakesh Chalasani, Jose C. Principe, and Naveen Ramakrishnan. A fast proximal method for convolutional sparse coding. In Proceedings of the International Joint Conference on Neural Networks (IJCNN). August 2013. doi:10.1109/IJCNN.2013.6706854.
[10]Rick Chartrand and Brendt Wohlberg. A nonconvex ADMM algorithm for group sparsity with sparse groups. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 6009–6013. May 2013. doi:10.1109/ICASSP.2013.6638818.
[11]Scott Shaobing Chen, David L. Donoho, and Michael A. Saunders. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 20(1):33–61, 1998. doi:10.1137/S1064827596304010.
[12]John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient projections onto the $\ell _1$-ball for learning in high dimensions. In Proceedings of the 25th International Conference on Machine Learning (ICML), 272–279. 2008. doi:10.1145/1390156.1390191.
[13]Kjersti Engan, Sven Ole Aase, and John Håkon Husøy. Method of optimal directions for frame design. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), volume 5, 2443–2446. 1999. doi:10.1109/icassp.1999.760624.
[14]Ernie Esser. Primal Dual Algorithms for Convex Models and Applications to Image Restoration, Registration and Nonlocal Inpainting. PhD thesis, University of California Los Angeles, 2010.
[15]Damien Garcia. Robust smoothing of gridded data in one and higher dimensions with missing values. Computational Statistics & Data Analysis, 54(4):1167–1178, 2010. doi:10.1016/j.csda.2009.09.020.
[16]Cristina Garcia-Cardona and Brendt Wohlberg. Subproblem coupling in convolutional dictionary learning. In Proceedings of IEEE International Conference on Image Processing (ICIP), 1697–1701. Beijing, China, September 2017. doi:10.1109/ICIP.2017.8296571.
[17]Cristina Garcia-Cardona and Brendt Wohlberg. Convolutional dictionary learning: a comparative review and new algorithms. IEEE Transactions on Computational Imaging, 4(3):366–381, September 2018. arXiv:1709.02893, doi:10.1109/TCI.2018.2840334.
[18]Tom Goldstein and Stanley Osher. The split Bregman method for l1-regularized problems. SIAM Journal on Imaging Sciences, 2(2):323–343, 2009. doi:10.1137/080725891.
[19]Felix Heide, Wolfgang Heidrich, and Gordon Wetzstein. Fast and flexible convolutional sparse coding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 5135–5143. 2015. doi:10.1109/CVPR.2015.7299149.
[20]Matthieu Kowalski. Sparse regression using mixed norms. Applied and Computational Harmonic Analysis, 27(3):303–324, 2009. doi:10.1016/j.acha.2009.05.006.
[21]Jialin Liu, Cristina Garcia-Cardona, Brendt Wohlberg, and Wotao Yin. First and second order methods for online convolutional dictionary learning. SIAM Journal on Imaging Sciences, 11(2):1589–1628, 2018. arXiv:1709.00106, doi:10.1137/17M1145689.
[22]Julien Mairal, Francis Bach, and Jean Ponce. Sparse modeling for image and vision processing. Foundations and Trends in Computer Graphics and Vision, 8(2-3):85–283, 2014. doi:10.1561/0600000058.
[23]Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends in Optimization, 1(3):127–239, 2014. doi:10.1561/2400000003.
[24]Leonid I. Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1–4):259–268, 1992. doi:10.1016/0167-2789(92)90242-F.
[25]Erik Skau and Brendt Wohlberg. A fast parallel algorithm for convolutional sparse coding. In Proceedings of the IEEE Image, Video, and Multidimensional Signal Processing Workshop (IVMSP). June 2018. doi:10.1109/IVMSPW.2018.8448536.
[26]Mariano Tepper and Guillermo Sapiro. Fast l1 smoothing splines with an application to kinect depth data. In Proceedings of IEEE International Conference on Image Processing (ICIP), 504–508. September 2013. doi:10.1109/ICIP.2013.6738104.
[27]Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 58(1):267–288, 1996. URL: http://www.jstor.org/stable/2346178.
[28]Brendt Wohlberg. Efficient convolutional sparse coding. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 7173–7177. May 2014. doi:10.1109/ICASSP.2014.6854992.
[29]Brendt Wohlberg. Boundary handling for convolutional sparse representations. In Proceedings of IEEE International Conference on Image Processing (ICIP), 1833–1837. September 2016. doi:10.1109/ICIP.2016.7532675.
[30]Brendt Wohlberg. Convolutional sparse representation of color images. In Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI), 57–60. March 2016. doi:10.1109/SSIAI.2016.7459174.
[31]Brendt Wohlberg. Convolutional sparse representations as an image model for impulse noise restoration. In Proceedings of the IEEE Image, Video, and Multidimensional Signal Processing Workshop (IVMSP). July 2016. doi:10.1109/IVMSPW.2016.7528229.
[32]Brendt Wohlberg. Efficient algorithms for convolutional sparse representations. IEEE Transactions on Image Processing, 25(1):301–315, January 2016. doi:10.1109/TIP.2015.2495260.
[33]Brendt Wohlberg. SParse Optimization Research COde (SPORCO). Software library available from http://purl.org/brendt/software/sporco, 2016.
[34]Brendt Wohlberg. Convolutional sparse coding with overlapping group norms. August 2017. arXiv:1708.09038.
[35]Brendt Wohlberg. ADMM penalty parameter selection by residual balancing. 2017. arXiv:1704.06209.
[36]Brendt Wohlberg. SPORCO: A Python package for standard and convolutional sparse representations. In Proceedings of the 15th Python in Science Conference, 1–8. Austin, TX, USA, July 2017. doi:10.25080/shinma-7f4c6e7-001.
[37]Brendt Wohlberg. Convolutional sparse representations with gradient penalties. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 6528–6532. Calgary, Alberta, Canada, 2018. arXiv:1705.04407, doi:10.1109/ICASSP.2018.8462151.
[38]Brendt Wohlberg, Rick Chartrand, and James Theiler. Local principal component pursuit for nonlinear datasets. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 3925–3928. Kyoto, Japan, March 2012. doi:10.1109/ICASSP.2012.6288776.
[39]Brendt Wohlberg and Paul Rodríguez. Convolutional sparse coding: boundary handling revisited. July 2017. arXiv:1707.06718.
[40]Wufeng Xue, Xuanqin Mou, Lei Zhang, and Xiangchu Feng. Perceptual fidelity aware mean squared error. In IEEE International Conference on Computer Vision, 705–712. December 2013. doi:10.1109/ICCV.2013.93.
[41]Wufeng Xue, Lei Zhang, Xuanqin Mou, and Alan C. Bovik. Gradient magnitude similarity deviation: a highly efficient perceptual image quality index. IEEE Transactions on Image Processing, 23(2):684–695, February 2014. doi:10.1109/TIP.2013.2293423.
[42]Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2):301–320, 2005. doi:10.1111/j.1467-9868.2005.00503.x.